Phylogenetic Profiles Reveal Structural and Functional Determinants of Lipid-binding.
نویسندگان
چکیده
One of the major challenges in the genomic era is annotating structure/function to the vast quantities of sequence information now available. Indeed, most of the protein sequence database lacks comprehensive annotation, even when experimental evidence exists. Further, within structurally resolved and functionally annotated protein domains, additional functionalities contained in these domains are not apparent. To add further complication, small changes in the amino-acid sequence can lead to profound changes in both structure and function, underscoring the need for rapid and reliable methods to analyze these types of data. Phylogenetic profiles provide a quantitative method that can relate the structural and functional properties of proteins, as well as their evolutionary relationships. Using all of the structurally resolved Src-Homology-2 (SH2) domains, we demonstrate that knowledge-bases can be used to create single-amino acid phylogenetic profiles which reliably annotate lipid-binding. Indeed, these measures isolate the known phosphotyrosine and hydrophobic pockets as integral to lipid-binding function. In addition, we determined that the SH2 domain of Tec family kinases bind to lipids with varying affinity and specificity. Simulating mutations in Bruton's tyrosine kinase (BTK) that cause X-Linked Agammaglobulinemia (XLA) predict that these mutations alter lipid-binding, which we confirm experimentally. In light of these results, we propose that XLA-causing mutations in the SH3-SH2 domain of BTK alter lipid-binding, which could play a causative role in the XLA-phenotype. Overall, our study suggests that the number of lipid-binding proteins is drastically underestimated and, with further development, phylogenetic profiles can provide a method for rapidly increasing the functional annotation of protein sequences.
منابع مشابه
Molecular diversity and evolution of the large lipid transfer protein superfamily.
Circulatory lipid transport in animals is mediated to a substantial extent by members of the large lipid transfer (LLT) protein (LLTP) superfamily. These proteins, including apolipoprotein B (apoB), bind lipids and constitute the structural basis for the assembly of lipoproteins. The current analyses of sequence data indicate that LLTPs are unique to animals and that these lipid binding protein...
متن کاملTRP_2, a lipid/trafficking domain that mediates diacylglycerol-induced vesicle fusion.
We recently modeled transient receptor potential (TRP) channels using the Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST), which derives structural, functional, and evolutionary information from primary amino acid sequences using phylogenetic profiles ( Ko, K. D., Hong, Y., Chang, G. S., Bhardwaj, G., van Rossum, D. B., and Patterson, R. L. (2008) Physics Arch. Quant....
متن کاملStructural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity
A detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson's disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the me...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملThe Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity.
MD-1 is a member of the MD-2-related lipid-recognition (ML) family, and associates with RP105, a cell-surface protein that resembles Toll-like receptor 4 (TLR4). The RP105⋅MD-1 complex has been proposed to play a role in fine-tuning the innate immune response to endotoxin such as bacterial lipopolysaccharide (LPS) via TLR4⋅MD-2, but controversy surrounds its mechanism. We have used atomically d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteomics & bioinformatics
دوره 2 شماره
صفحات -
تاریخ انتشار 2009